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Abstract—A recent proactive defense mechanism, named as
moving-target-defense (MTD), has been proposed as a prevailing
topic that is capable of actively changing transmission line reac-
tance to preclude cyberattacks. However, the MTD strategy has
seldom been studied for the unbalanced AC distribution system
in the existing literature. Towards the end, this paper proposes
a deeply-hidden MTD (DH-MTD) to elaborately hide both the
self and mutual reactance of each phase at the transmission line
installed with D-FACTS devices. Both the branch and injection
power phasor measurement functions are integrated into DH-
MTD in the cyberattack scenario and under the normal operating
condition, while the system voltage stability is ensured. The
proposed DH-MTD model is solved using a nonlinear least
square (NLS) method based on the trust-region algorithm due
to the non-Gaussian noise assumption. Also, we cope with the
MTD allocation (MTDA) problem using a data-driven normalized
PDF peak residual (NPPR) index. The effectiveness of the
proposed DH-MTD method is demonstrated in the unbalanced
IEEE 123-bus distribution system against both branch and node
cyberattacks.

Index Terms—Moving-target-defense, unbalanced distribution
system, voltage stability, nonlinear least square.

I. INTRODUCTION

POWER systems are undergoing more and more severe
cyberattacks that significantly affect the operating relia-

bility and security [1]. For instance, the Kudankulam nuclear
power plant, the newest and largest such power station in
India, was hacked using malware designed for data extraction
in October 2019 [2]. Furthermore, malicious cyberattacks are
threatening the secure and stable operation of distribution
systems through the increasing development of micro-phasor
measurement units (micro-PMUs) [3]. By injecting false data
intelligently designed as a type of malicious cyberattacks to
remain stealthy, erroneous measurements may be bypassed
if the comprehensive knowledge of the distribution system
topology is known to attackers [4].

Recently, as an aspect of defense-in-depth techniques that
can increase the cost of cyberattacks for adversaries, the
hidden moving target defense (HMTD) could utilize redun-
dancy and diversity of the solution tools and system measure-
ments [5]. The definition of “hidden” MTD means to actively
hide parameters of transmission lines by using the distributed
flexible AC transmission system (D-FACTS) devices, which
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can perturb the effective line reactance of transmission lines
where they are installed. The concept of “hidden” MTD has
already been adopted in several publications. For instance,
Tian et al. [6] in 2018 defined the “hidden” MTD as changing
the line susceptance of transmission lines but also keeping
stealthiness even when the attackers are capable of checking
the activation of D-FACTS. Liu et al. [7] in 2018 defined the
“hidden” MTD as optimally changing the branch reactance in
AC network to minimize the system loss as well as line power
flow differences. The proactive defense mechanism against
cyberattacks developed by HMTD is to actively perturb param-
eters of transmission lines by using D-FACTS devices. This is
because D-FACTS can change the effective line reactance of
transmission lines on which they are installed [8] that allow
producing moving targets defending against cyberattacks.

In the literature, MTD strategies have been proven to be
complementary and synergistic with the application in the
distribution system state estimation (DSSE) [9]. Tian et al. [6]
proposed an HMTD approach to maintain the power flow
by analyzing the completeness and stealthiness of MTD. Liu
et al. [7] designed a secure MTD that could maximize the
likelihood of an attack detection and identification while mini-
mizing the effect on the operational power loss on transmission
lines. Zhang et al. [10] minimized the dimension of the
stealthy attack space and maximized the number of covered
buses by exploiting MTD on an appropriate set of branches.
Li et al. [11] investigated the possibilities of proactively
detecting the high-profile false data injection (FDI) attacks
on power grid state estimation by using MTD. Liu et al. [12]
constructed an HMTD strategy in combination with network
reconfiguration by minimizing the system loss and line power
flow differences before and after the HMTD. Yao and Li [13]
developed a state estimation algorithm based on the selection
of random measurements inspired by MTD to prevent and
mitigate stealthy cyber-attacks. Lakshminarayana et al. [14]
invalidated the knowledge that the attackers use to mask the
effects of the physical attack by actively performing MTD.
Though the general perception points that MTD would not
interfere with the functionalities of DSSE algorithms, very few
research has utilized MTD for this application in distribution
systems, let alone the unbalanced distribution system.

To distinguish our main contributions and differences from
the existing literature, Table I compares a variety of MTD
strategies that are discussed in the state-of-the-art literature.
As shown in this table, most of conventional MTD models
focus on the balanced transmission-level DC system based on
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TABLE I
LITERATURE COMPARISON FOR MTD-BASED MODELS

References Trans./Distr.-
level system

Balanced/
Unbalanced

DC/AC
model

Gaussian noise
assumption

[10], [11], [14],
[15], [16] Trans.- Balanced DC Gaussian

[6], [7] Trans.- Balanced DC+AC Gaussian
[13] Trans.- Balanced AC Gaussian
[12] Distr.- Balanced AC –

This paper Distr.- Unbalanced AC non-Gaussian

the Gaussian noise assumption. However, the DC system is
too idealistic compared with the AC system and may not be
applicable in practice. Also, the Gaussian noise assumption is
too idealistic as the ambient noise does not always conform to
it. Unlike the traditional MTD research, we propose a deeply-
hidden MTD (DH-MTD) that is the first of its kind to consider
the unbalanced AC distribution systems, while considering the
non-Gaussian noise1.

For the distribution-level system, to the best of our knowl-
edge, only Liu et al. [12] explored the HMTD in distribution
systems so far. However, they do not extend HMTD to the
unbalanced distribution system yet, which inspires our work
in this paper. Most of the conventional MTD strategies only
consider perturbing the reactance of the transmission-level
system with simplification to single-phase equivalents. Such a
simplifying hypothesis of the equivalent single-phase model is
not reliable for the three-phase unbalanced distribution system.
In addition, for the simplified single-phase balanced distribu-
tion system, it is too arbitrary to assume that cyberattacks are
performed on three phases of the transmission line simulta-
neously. This is because professional attackers may prefer to
stealthily compromise a single phase. This case makes the
research of an unbalanced three-phase system more practical
than the balanced system [17]. For conventional Arbitrarily-
Hidden MTD (AH-MTD) strategies, the simplified single-
phase reactance perturbation (RP) is uniform but arbitrary
from the perspective of three phases on the transmission
line. Towards this end, we propose a DH-MTD strategy to
elaborately hide both self and mutual reactance of the three-
phase transmission line. The main contributions and novelties
of this paper include:

(i) The proposed DH-MTD is the first of its kind that
considers the unbalanced AC distribution systems. Based
on this, the system voltage unbalancing status can be
achieved in the cyberattack scenario, while the voltage
stability is ensured.

(ii) An MTD model that does not require any Gaussian
measurement noise assumption is proposed. Unlike the
traditional weighted least square (WLS) algorithm that
depends on the Gaussian noise, the proposed DH-MTD
can effectively process the non-Gaussian noise (including
Gaussian noise that is set as a special form of non-
Gaussian noise in this paper).

(iii) A data-driven MTD allocation (MTDA) method is pro-
posed to choose the exact transmission line to perturb its

1Note that as the Gaussian noise is taken as a special form of the non-
Gaussian noise in this paper, it also applies to the proposed MTD model.
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Fig. 1. PI models of single-line and three-phase branches with the complex
scalar RP ∆X and the complex matrix RP ∆X in the transmission and
distribution systems.

reactance. A prior-information-based metric is designed
to solve the MTDA problem.

The organization of this paper is as follows. In Section II,
the theoretical methodology of the proposed DH-MTD and its
solution are introduced. The data-driven DH-MTD allocation
method is described in Section III. Evaluation metrics are
discussed in Section IV. Case studies and result analysis
performed on the unbalanced IEEE 123-bus distribution sys-
tem are discussed in Section V. Concluding remarks are
summarized in Section VII.

II. THEORETICAL METHODOLOGY AND SOLUTION

For the current transmission system, only a single-line dia-
gram instead of a three-line diagram is modeled for applying
MTD. For the distribution system in this paper, we model
the three-phase unbalanced branch by separately adding the
reactance to each line parameter. To illustrate the main dis-
tinction of MTD in the transmission and distribution systems,
Fig. 1 shows PI models of single-line and three-phase branches
with the complex scalar RP ∆X and the complex matrix RP
∆X. In the transmission system, existing MTD models [6],
[11], [12] consider a complex scalar RP ∆X in a single-line
diagram. However, in the unbalanced three-phase distribution
system, the single-line diagram cannot work and more detailed
information of branch parameters of each phase is highly
desired. Thus, the complex matrix RP ∆X with both the self
and mutual reactance must be elaborately designed.

A. Deeply-Hidden MTD Modeling

In this section, we describe the mathematical model of the
proposed DH-MTD to defend against cyberattacks in unbal-
anced distribution systems. Based on the MTD definition [7],
we introduce an RP matrix (∆X) that can be actively perturbed
by operators through D-FACTS installed on the branch. Fig. 1b
shows PI models of single-line and three-phase branches with
the complex scalar RP ∆X and the complex matrix RP ∆X.
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Ṡ
hk

L,c

=

 V̇
h

a

V̇
h

b

V̇
h

c


 İ
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where [V̇
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c ]T is the three-phase voltage phasor at
node h in the previous normal operation scenario. The
branch and injection current phasors [İ
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[İ
h

IN,a, İ
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the measurement noise phasors. N is the set of system nodes.
(k∈h∈N )∩(k 6=h) means any node k connected to node h.
Ż is the three-phase impedance matrix of branch h→k. Ẏ is
the three-phase shunt admittance matrix at node h. λh=+0.5
if the branch current is measured from node h and λh=−0.5
if the branch current is measured from node k. The symbol
of ‘[·]∗’ denotes the conjugate matrix. Eqs. (1) and (2) can be
generalized as:
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T = fL(V̇ a, V̇ b, V̇ c) + ε̇L (5)
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In the current cyberattack scenario with the RP matrix
∆X, the compromised measurements of branch and injection
power phasors [Ṡ′hk
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and (10). [U̇
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c ]T is the three-phase voltage phasor
of node h in the current cyberattack scenario. ε̇L and ε̇IN
are the measurement noise phasors. Eqs. (7) and (8) can be
generalized as:
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where | · | is the magnitude of a phasor variable. ε̇V is the
measurement noise phasor. It can be generalized as:
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where fL, fIN, fV, hL, and hIN are generalized function vectors
of state variables and measurement equations.

Finally, we can obtain the generalized mathematical MTD
model G of the three-phase distribution system, given by:

Y=G (X) + ε (16)

where X is the set of estimated variables including state
variables and the RP matrix. Y is the set of measurements. ε
is the set of measurement noises. X and Y are given by:
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L,a,Ṡ
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L,a,Ṡ
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where N is the total number of system nodes. M is the total
number of system branches.

As non-Gaussian noises are assumed beforehand, the con-
ventional weighted least square (WLS) method is not ap-
plicable to the aforementioned DH-MTD model. Thus, the
nonlinear least square (NLS) method is used to find the
minimum errors between estimated measurements and original
attacked measurements. The objective function f (X) of DH-
MDT is given by:

X̃=arg min
X

f (X)=arg min
X

[Y−G (X)]
T·[Y−G (X)] (19)
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cc′


︸ ︷︷ ︸

Ẏ
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B. Discussion of RP Matrix ∆X for Comparing the Difference
of MTD Strategies

For the conventional MTD, each element of RP matrix ∆X
is up to ±(10%∼20%) of the line reactance X [7], [8] with
a uniform but arbitrary coefficient βH. For the proposed DH-
MTD that can deeply hide reactance changes, we elaborate
a set of six separate and independent RP coefficients (i.e.,
{β1, · · · , β6}) by multiplying the self and mutual reactance at
each branch installed with D-FACTS. As the impedance matrix
Ż is symmetric, the RP matrix ∆X is also set as a symmetric
matrix to deeply perturb cyberattackers. Taking one branch
h→k installed with D-FACTS as an example, the RP matrix
∆X is a 3×3 matrix. We only need to solve 6 elements of the
upper (or lower) triangular matrix in the 3×3 RP matrix ∆X.
Thus, ∆X can be expressed as:
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number of system nodes be N , the number of D-FACTS de-
vices be ND, and the voltage magnitude of the node connected
with the main grid be fixed as 1.0 p.u. Thus, the total number
of estimated variables should be (2N−1)× 6 +ND× 6. The

variables in (17) can be completely expressed as:
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For the sake of comparison, two types of shallowly-
hidden MTD strategies are additionally designed as: (i) only
Shallowly-Hiding self reactance (SH1-MTD) and (ii) only
Shallowly-Hiding mutual reactance (SH2-MTD). To vividly
show the distinction among AH-, SH1-, SH2-, and DH-MTD,
Table II illustrates the differentiated RP matrix ∆X (see the
second row) and the total number of estimated variables (see
the third row). Basically, AH-MTD can arbitrarily hide ND
coefficients; SH1- and SH2-MTD can shallowly hide 3ND
coefficients; and the proposed DH-MTD can deeply hide 6ND
coefficients.

C. DH-MTD Model Solving: Trust-Region Method

To solve the NLS problem in (19), we use the trust-region
method, which is a simple yet powerful concept in optimiza-
tion. A brief standard pseudocode is given in Algorithm 1,
where NT is the total number of iterations.

Definition 1: The nonlinear objective function f (X) in (19)
is a second-order continuous differentiable function defined in
the real coordinate space Rn of n dimensions (or variables).
The neighborhood of the current point Xi is defined as Ωi:
Ωi={X∈Rn|‖X−Xi‖≤ζi}, where ζi is the trust region radius.
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TABLE II
DIFFERENCE OF RP MATRIX ∆X AMONG AH-MTD, SH1-MTD, SH2-MTD, AND DH-MTD

AH-MTD SH1-MTD SH2-MTD DH-MTD

∆X=βH ·

Xhk
aa′ X

hk
ab′ X

hk
ac′

Xhk
ba′ Xhk

bb′ Xhk
bc′

Xhk
ca′ Xhk

cb′ Xhk
cc′

 ∆X=

β1·Xhk
aa′ 0 0

0 β2·Xhk
bb′ 0

0 0 β3·Xhk
cc′

 ∆X=

 0 β1·Xhk
ab′ β2·X

hk
ac′

β1·Xhk
ba′ 0 β3·Xhk

bc′

β2·Xhk
ca′ β3·Xhk

cb′ 0

 ∆X=

β1·Xhk
aa′ β2·Xhk

ab′ β3·X
hk
ac′

β2·Xhk
ba′ β4·Xhk

bb′ β5·Xhk
bc′

β3·Xhk
ca′ β5·Xhk

cb′ β6·Xhk
cc′


(2N−1)×6+ND×1 (2N−1)×6+ND×3 (2N−1)×6+ND×3 (2N−1)×6+ND×6

Algorithm 1: Trust-Region Method-based NLS for
Solving DH-MTD Model

1 Input: Initial point X0, upper bound ζ̄ of ζ:ζ0∈(0,ζ̄),
thresholds φ, 0<η1≤η2<1, and 0<γ1<1<γ2;

2 for Iteration i from 0 to NT do
3 Solve trust-region problem in (22) and obtain Θi;
4 if Impedance matrix Ż + j∆X is invertible then
5 Calculate f (Xi), ri, and Xi+1:

6


f (Xi) = [Y−G (Xi)]

T·[Y−G (Xi)]

ri =
[f (Xi)− f (Xi + Θi)]

[qi (0)− qi (Θi)]

Xi+1 =

{
Xi + Θi, if ri ≥ η1
Xi, else

;

7 Calibrate the trust-region radius ζi+1:

8

ζi+1∈(0, γ1ζi] , if ri < η1
ζi+1∈[γ1ζi, ζi] , if ri ∈ [η1, η2)
ζi+1∈

[
ζi,min

{
γ2ζi, ζ̄

}]
, if ri≥η2

;

9 Generate gradient gi+1 and Hessian matrix
Hi+1;

10 else
11 As impedance matrix Ż + j∆X is irreversible,

variable Xi+1 is directly updated by:
12 Xi+1 = Θi −Xi;
13 end
14 if max

[
|Xi−Xi+1|, |f(Xi)−f(Xi+1)|

]
<φ then

15 Terminate the iteration;
16 end
17 end

Mathematically, the trust-region problem is constituted as:

{
min qi(Θ)= f(Θ)+gT

i Θ+ 1
2ΘTHiΘ

s.t. ‖Θ‖ ≤ ζi
(22)

where Θ = X−Xi. gi is the gradient of objective function f (·)
at the current point Xi and gi = ∇f (Xi). Hi is the Hessian
matrix at the current point Xi. ‖·‖ denotes the 2-norm.

Four steps are briefly introduced in Algorithm 1 as follows.
Step i): the initial point X0, upper bound ζ̄ of the trust
region radius ζ, thresholds φ, η1, η2, γ1, and γ2 are prepared;
Step ii): in each iteration, the trust-region problem modeled
in (22) is solved to obtain the solution Θi; Step iii): if the
impedance matrix is invertible, the objective function f (Xi)
and estimated variable Xi+1 are calculated while the trust-
region radius ζi+1 is calibrated; Step iv): if the threshold is
satisfied, the iteration is terminated.

III. DATA-DRIVEN MTD ALLOCATION

Though we have designed an elaborate DH-MTD model,
it is still challenging to choose the exact transmission line to
install D-FACTS for the reactance perturbation. This concept
is the so-called MTDA problem in this paper. To solve this
problem, we propose a novel data-driven MTDA method.
First, it is assumed that operators have already learned and
known the prior information of the DSSE under historical
normal operating conditions. This process can be readily
implemented by state-of-the-art DSSE techniques. Then, let
εN = (ε1, ε2, · · · , εn) denote the set of estimation errors and
fN (εN ) denote the corresponding PDF under the historical
normal operating condition, while f̃ (ε̃) denotes the PDF of
estimation errors in cyberattack scenarios. The proposed NPPR
index can be defined as:

NPPR =
[
fN (εN = 0)− f̃ (ε̃ = 0)

]
/f̃ (ε̃ = 0) (23)

Remark 1: As the ideal value of estimation errors is
expected to be zero (ε→ 0) and their probability distribution
is unimodal, the PDF peak (PP) should approximate the value
that zero corresponds to, i.e, PP = lim

ε→0
f (ε) ≈ f (ε = 0).

To control the smoothness of the resulting density curve
of estimation errors, a nonparametric kernel smoothing
estimator is used to represent the PDF, i.e., f (x) =∑n

k=1K
(
x−εk

h

)
/nh. Considering the definition of NPPR

in (23), we can get:

NPPR=

1
nNhN

∑nN

k=1K
(

εN,k

hN

)
− 1

ñh̃

∑ñ
k=1K

(
ε̃k
h̃

)
1
ñh̃

∑ñ
k=1K

(
ε̃k
h̃

) (24)

where K (·) is the kernel smoothing function. n is the sample
size. h is the bandwidth. Marks of ‘∼’ and ‘N ’ denote the
cyberattack scenario and historical normal operating condition.

Based on the NPPR index, we propose a data-driven
technique to allocate the exact transmission line for MTD.
The optimal branch iopt with the smallest NPPR value, i.e.,
arg min (NPPRi)i∈M, where M is the set of branch mea-
surements, is chosen as the final MTDA. This is because the
smaller NPPR is, the less impacts to the distribution system
cyberattacks may cause. As the NPPR metric has already been
learned and known by operators, the minimum NPPR can
be used to dynamically select measurements for DSSE. The
pseudocode of the proposed data-driven MTDA is given in
Algorithm 2. Four steps are briefly introduced as follows. Step
i): the dataset of historical state estimation errors is prepared
under normal operating conditions; Step ii): the data-driven
NPPR metric is calculated in the sth Monte Carlo simulation;
Step iii): the measurements with the minimum NPPRi,s for
scenarios are selected as a data-driven MTDA and checked
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Algorithm 2: Proposed Data-Driven MTDA

1 Input: Historical state estimation errors εN and actual
measurements in cyberattack scenarios.

2 for Monte Carlo scenario s from 1 to Ns do
3 Calculate NPPR for all branch measurements M.
4 Find the optimal branch with minimum NPPR:

iopt,s = arg min
i∈M

NPPRi,s (25)

if topology is observable by spanning trees then
5 Hold iopt,s and M;
6 else
7 Remove iopt,s: M′|iopt,s /∈M′ =M− iopt,s and

update:

jopt,s = arg min
j∈M′

NPPRj,s (26)

iopt,s ← jopt,s; M←M′ (27)
8 end
9 Implement DSSE and save estimated errors of

measurements.
10 end

by a spanning tree for ensuring the topological observability;
and Step iv): the measurements selected with MTDA are used
for state estimation. The optimal set of measurements is not
uniquely determined and can be dynamically updated.

The overall framework of the proposed DH-MTD strategy
considering voltage stability is illustrated in Fig. 2. It mainly
consists of four major steps: D-FACTS allocation, DH-MTD
modeling, DH-MTD model solving, and performance evalua-
tion. The overall procedure of the proposed DH-MTD method
mainly consists of four steps, which are briefly introduced as
follows.

(i) A data-driven NPPR index is designed to allocate the D-
FACTS device.

(ii) A mathematical NLS optimization model is constituted
for the DH-MTD strategy, including both the branch and
injection power phasor measurement constraints in the
normal operation and cyberattack scenarios.

(iii) A trust-region algorithm is utilized to solve the nonlin-
ear DH-MTD model considering non-Gaussian ambient
noises.

(iv) Numerical, physical, and visualized metrics are developed
to evaluate the performance of multiple MTD strategies,
i.e., AH-, SH1-, SH2-, and DH-MTD.

IV. EVALUATION METRICS

Multiple metrics are used to evaluate the performance, that
is, root mean square error (RMSE), standard deviation (STD),
voltage unbalance factor (VUF), true positive rate (TPR),
performance index (PI), and performance diagram. RMSE and
STD have commonly been used as a measure of how far the
estimates are from the real measurements. VUF is an European
standard to indicate the degree of unbalance [18]. TPR has
widely been used to indicate the detection accuracy. PI is
used to analyze the contingency [19], [20]. The performance
diagram is used to visualize the estimation skill.

Available Measurements 
Injected by Cyberattacks
Available Measurements 
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Normal Operating 

Conditions

Dataset of Historical 
State Estimation 

Errors Under 
Normal Operating 
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Branch power phasor constraints, injection power phasor 
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NPPR as optimal MTD allocation:
Algorithm 2: Find the minimum 

NPPR as optimal MTD allocation:

Fig. 2. Framework of the proposed DH-MTD strategy considering voltage
stability.

A. Metrics I: Numerical and Physical Evaluation

To numerically evaluate the performance of different MTD
strategies for cyberattacks, RMSE and STD are used for
comparison:

RMSE =

√
1

N

∑N
i=1

(
X̃i −Xi

)2
× 100% (28)

STD =

√
1

N

∑N
i=1 (ei − ē)2 (29)

where X̃i ∈ X̃ is the estimated state value and solved by (19).
Xi ∈ X is the actual state value. ei = X̃i−Xi is the estimation
error. ē is its corresponding mean value.

As a physical metric, the VUF metric defined as the
percentage ratio of the negative sequence voltage (U̇ negative)
over the positive sequence voltage (U̇ positive) has been used in
the literature [21]:

V UFi = 100× U̇
i

negative/U̇
i

positive (30)

where i denotes the ith system node. To physically validate
the effectiveness of the proposed DH-MTD, we use the VUF
deviation (VUFD) to design a metric of the average absolute
VUFD (V UFD) for evaluation:

V UFD=
1

N

N∑
i

|V UFDi|=
1

N

N∑
i

∣∣∣Ṽ UFi−V UFi

∣∣∣ (31)

where Ṽ UFi is the estimated VUF at node i using one MTD
strategy. V UFi is the actual VUF at node i. Ideally, V UFD
should be as close to zero as possible. The smaller V UFD
is, the better performance one MTD strategy can provide.

To demonstrate the effectiveness regarding the detection
accuracy, TPR is defined as the percentage of the number
of detected true positive cyberattacks (TP ) that are actually
observed in the real system measurements over the total
number of cyberattacks (NA), given by:

TPR = TP/NA × 100% (32)
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To perform the contingency analysis of multiple MTD
strategies, the performance index PI is formulated by:

PI =
∑
h∈N

Wh

2n


∣∣∣V̇ h

∣∣∣− ∣∣∣V̇ sp
h

∣∣∣
∆V̇

Lim
h

2n

(33)

where
∣∣∣V̇ h

∣∣∣ is the voltage magnitude at bus h.
∣∣∣V̇ sp

h

∣∣∣ is the

specified (rated) voltage magnitude at bus h. ∆V̇
Lim
h is the

voltage deviation limit. n is the exponent of penalty function
(n=1 preferred). N is the set of system nodes. Wh is the real
non-negative weighting factor (Wh=1 preferred). A smaller PI
value indicates a better contingency performance of one MTD
strategy.

B. Metrics II: Visualized Estimation Performance

Fig. 3 shows a measure of estimation skill based on a
contingency table for comparison. Given sets of Ω1, Ω2, and
Ω3 are used in this figure, where the accurate set is Ω1

{a,b,c} :

X̃ ∈ X ± φ1{a,b,c}; the under-estimated set is Ω2
{a,b,c} : (X̃ ∈

X − φ2{a,b,c}) − (X̃ ∈ X − φ1{a,b,c}); and the over-estimated
set is Ω3

{a,b,c} : (X̃ ∈ X+φ2{a,b,c})− (X̃ ∈ X+φ1{a,b,c}). The
performance diagram is visualized by metrics including the
probability of detection (POD), critical success index (CSI),
frequency bias score (FBIAS), and success ratio (SR). Detailed
information about the performance diagram and metrics can
be found in [22], [23].

V. CASE STUDIES AND RESULTS

The unbalanced IEEE 123-node standard distribution net-
work [21] is used to carry out case studies in this section.
This network is a radial distribution system. The presence
of single- and two-phase loads causes significant load im-
balance. To perform the data-driven D-FACTS allocation, we
set 1,000 Monte Carlo simulations. Numerical simulations are
performed in the MATLAB R2017a environment [24], [25].
Four strategies are compared to validate the effectiveness of
the proposed MTD method, i.e., AH-, SH1-, SH2-, and DH-
MTD. The measurement noises are assumed to obey the non-
Gaussian distribution2. Non-Gaussian noises are generated
using the moment-based Hermite transformation model [26].
The NLS solver lsqnonlin in MATLAB [27] is used to solve

2As Gaussian distribution-based noises have already been processed by
state-of-the-art literature [6], [7], [10], [14]–[16], we do not seek to repeatedly
cope with Gaussian noises in this paper.

TABLE III
RP COEFFICIENT ESTIMATION RESULTS

MTD RP Coeff. Actual Estimation
AH βH 0.18 0.1808
SH1 {β1, β2, β3} {0.18, 0.16, 0.12} {0.1798, 0.1598, 0.1196}
SH2 {β1, β2, β3} {0.18, 0.16, 0.12} {0.1805, 0.1613, 0.1211}

DH {β1, β2, β3,
β4, β5, β6}

{0.18, 0.16, 0.12,
0.15, 0.13, 0.17}

{0.1801, 0.1609, 0.1193,
0.1495, 0.1296; 0.1688}

the aforementioned MTD models. The threshold φ of the
stopping tolerance is set as 10−6. The maximum number of
iterations is set as 400. To validate the effectiveness of the
proposed DH-MTD strategy, five basic assumptions are made
in this section:

(i) The information of the historical normal operating con-
dition (i.e., DSSE) has been entirely known by operators
in advance, while the information of the exact location
and type of the cyberattack is unclear in the current
cyberattack scenario.

(ii) Voltage magnitudes are estimated with significantly less
fluctuations in the cyberattack scenario. This assumption
aims to guarantee the voltage stability [6].

(iii) The proposed DH-MTD-based network reconfiguration is
performed in the unbalanced distribution network, which
is still an ongoing extension as mentioned in [12].

(iv) The measurement noises are assumed to obey the non-
Gaussian distribution, which has seldom been studied in
the existing literature.

(v) Based on the available prior knowledge, pseudo measure-
ments are predefined at the buses where no measurements
devices are present. The three-phase active and reactive
power injection is inferred based on historical data or
statistical assumptions.

In the following case studies, first, we seek to validate the
effectiveness of the proposed data-driven allocation method
for MTD. Second, we seek to validate the effectiveness of the
proposed DH-MTD. Then, we try to use it for the analysis of
system voltage unbalancing status and cyberattack detection.

A. MTDA Validation and Analysis Using Monte Carlo

Three MTDA methods are compared to validate the ef-
fectiveness of the proposed MTDA, i.e., random MTDA,
w/o (without) MTDA, and proposed MTDA. For the random
MTDA, measurements are randomly chosen as inputs for
the MTD strategy. For the w/o MTDA, no MTD strategies
are adopted in cyberattack scenarios. For the ideal case, the
measurement data is securely collected without considering
any intrusion of cyberattacks.

To validate the effectiveness of the proposed MTDA
method, the current magnitude measurement is manipulated by
attackers using a multiplicative cyberattack with a coefficient
(×10). Multiple Monte Carlo simulations are performed with
this coefficient by adding ambient noises. This cyberattack is
set at Branch 9-10 (NO. 10), which is taken as an example
for a better illustration.

Fig. 4 shows the estimation results of measurements using
Monte Carlo simulations with three strategies. Among all the
three allocation methods (namely w/o MTDA, random MTDA,
and proposed MTDA), the proposed MTDA method shows the
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Fig. 4. Estimation results of measurements using Monte Carlo simulations
with three MTDA methods.
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Fig. 5. Estimation results of state variables using four MTD strategies.

sharpest peaks and lightest tails for both current phase and
magnitude measurements (see the solid red lines). It shows
that the proposed MTDA outperforms the random MTDA and
w/o MTDA. Fig. 4a vividly illustrates the scatter diagram
of current magnitude and phase using 1,000 Monte Carlo
simulations. As shown in this figure, the proposed MTDA can
obtain relatively concentrated estimation errors around zero
(see the red rectangles). Fig. 4b shows estimation error bars
of current magnitude and phase measurements. As can be seen,
the proposed MTDA can provide narrower confidence intervals
and smaller mean values of estimation errors, compared with
the strategy without MTDA and random MTDA methods.

B. Effectiveness Analysis of Proposed DH-MTD

The estimated RP coefficients are illustrated in Table III
using AH-, SH1-, SH2-, and DH-MTD strategies. As can
be seen, the estimated RP coefficients are very close to the
actual values. To further validate the effectiveness of the
proposed DH-MTD, Fig. 5 illustrates the estimation results
of voltage phase angle and magnitude at each node using

0 0.2 0.4 0.6 0.8 1
Success Ratio

0

0.2

0.4

0.6

0.8

1
1.01.31.523510

0.9
0.8

0.7
0.6
0.5
0.4
0.3
0.2
0.1

Critical Success Index

P
ro

b
a
b
ili

ty
 o

f 
D

e
te

c
ti
o
n F

re
q
u
e
n
c
y
 B

ia
s
 S

c
o
re

Phase-A

Phase-B

Phase-C

Phase-A

Phase-B

Phase-C

SH1-MTDAH-MTD
SH2-MTD DH-MTD

SH1-MTDAH-MTD
SH2-MTD DH-MTD

(a) Voltage Phase Angle

0 0.2 0.4 0.6 0.8 1
Success Ratio

0

0.2

0.4

0.6

0.8

1
1.01.31.523510

0.9
0.8

0.7
0.6
0.5
0.4
0.3
0.2
0.1

Critical Success Index

P
ro

b
a
b
ili

ty
 o

f 
D

e
te

c
ti
o
n F

re
q
u
e
n
c
y
 B

ia
s
 S

c
o
re

Phase-A

Phase-B

Phase-C

Phase-A

Phase-B

Phase-C

SH1-MTDAH-MTD
SH2-MTD DH-MTD

SH1-MTDAH-MTD
SH2-MTD DH-MTD

(b) Voltage Magnitude

Fig. 6. Performance diagram of contingency table for MTD strategies.

TABLE IV
COMPARISON OF RMSE METRICS FOR DIFFERENT MTD STRATEGIES [‰]

Variables Phase AH-MTD SH1-MTD SH2-MTD DH-MTD

Angle
A 9.07 6.54 8.68 5.36
B 11.62 10.73 9.67 7.09
C 11.61 10.86 9.73 5.24

Magnitude
A 3.95 3.19 2.97 1.68
B 4.35 3.56 3.17 2.21
C 4.07 3.11 2.94 1.89

four MTD strategies: AH-, SH1-, SH2-, and DH-MTD. As
can be seen, the estimation results using our proposed DH-
MTD (see the rectangles) are much concentrated to the actual
values (see the asterisks), compared with AH-MTD (see the
crosses), SH1-MTD (see the pluses), and SH2-MTD (see the
yellow dots). Also, it should be noted that some samples are
almost under 0.95 p.u. using AH-, SH1-, and SH2-MTD at the
bottom of Fig 5d. It means that voltage profiles may violate
the normal operating limit of 0.95∼1.05 p.u. This is because
those MTD strategies cannot elaborately hide the RP matrix
to defend against cyberattacks, which consequently causes the
compromised estimation results of voltage magnitude.

Fig. 6 shows the visualized performance diagram for com-
parison of AH-, SH1-, SH2-, and DH-MTD strategies, re-
spectively. For a performance diagram shown in Fig. 6, 1)
the left axis represents the value of POD; 2) the bottom
axis represents SR; 3) the diagonal dashed lines represent
FBIAS; and 4) the dashed curves represent CSI. For a better
performance, the points should be close toward the top right
corner of the performance diagram. Three sets of thresholds{
φ1a, φ

1
b , φ

1
c

}
and

{
φ2a, φ

2
b , φ

2
c

}
are predefined based on dif-

ferent variable values at each phase. Fig. 6 demonstrates the
good state estimation performance of the proposed DH-MTD
model compared with the other MTD models. The red marks
(estimated by DH-MTD) are the closest to the top right corner
than the blue marks (estimated by SH2-MTD), green marks
(estimated by SH1-MTD), and purple marks (estimated by
AH-MTD). Specifically, for the voltage phase angle, the mean
SR value (bottom x-axis) is 0.87 by using DH-MTD. The mean
SR values using AH-, SH1-, and SH2-MTD are 0.74, 0.79,
and 0.82, respectively. For the voltage magnitude, the mean
SR value is 0.93 by using DH-MTD. The mean SR values
using AH-, SH1-, and SH2-MTD are 0.79, 0.83, and 0.86,
respectively.

To quantitatively evaluate the performance of different MTD
strategies, Tables IV and V compare the RMSE and standard
deviation metrics for AH-, SH1-, SH2-, and DH-MTD strate-
gies, respectively. As can be seen, the proposed DH-MTD can
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TABLE V
COMPARISON OF STANDARD DEVIATION STD METRICS FOR DIFFERENT

MTD STRATEGIES [‰]

Variables Phase AH-MTD SH1-MTD SH2-MTD DH-MTD

Angle
A 6.86 6.84 4.82 3.63
B 14.02 10.25 9.01 6.07
C 14.23 10.01 6.71 5.19

Magnitude
A 3.34 3.19 2.34 1.59
B 4.45 3.38 2.68 2.64
C 4.01 3.04 3.01 1.69

TABLE VI
COMPARISON OF GAUSSIAN AND NON-GAUSSIAN NOISE ASSUMPTION

USING PROPOSED DH-MTD MODEL [‰]

Variables Phase RMSE STD

Gaussian non-
Gaussian Gaussian non-

Gaussian

Angle
Phase A 6.57 5.36 6.88 3.63
Phase B 8.65 7.09 8.52 6.07
Phase C 5.98 5.24 6.57 5.19

Mag.
Phase A 3.54 1.68 3.54 1.59
Phase B 4.65 2.21 5.62 2.64
Phase C 3.21 1.89 3.22 1.69

estimate the smallest RMSE and standard deviation values
compared with the other strategies. This is mainly because
the proposed DH-MTD can elaborately hide both the self and
mutual reactance in the RP matrix on the three-phase branch.
For example, with respect to the phase-A angle, RMSE using
DH-MTD is reduced by 69.22%, 22.01%, and 61.94% in terms
of AH-, SH1-, and SH2-MTD. Also, the standard deviation
using DH-MTD is reduced by 88.98%, 88.43%, and 32.78%.

Another interesting finding is that the RMSE and standard
deviation metrics of voltage magnitude are much smaller than
those of voltage phase angle. For instance, the mean RMSE
of phase angle using DH-MTD is 5.89‰, while the mean
RMSE of magnitude is 1.92‰. The mean standard deviation
of phase angle using DH-MTD is 4.96‰, while the mean
standard deviation of magnitude is 1.97‰. This is because all
of the MTD strategies consider to maintain the voltage stability
as formulated in (13) and (14).

To show the effectiveness of processing non-Gaussian
noises, Gaussian distribution-based measurement noises are
used for a comparison to the validate the improvement of
the proposed DH-MTD model. Measurements are added by
a Gaussian noise with zero mean and a standard deviation as
one thousandth of the corresponding value. Table VI compares
RMSE and STD metrics for the proposed DH-MTD model
based on the Gaussian and non-Gaussian noise assumption. As
can be seen, compared with the Gaussian noise assumption,
both RMSE and STD metrics are slightly reduced by using
the proposed DH-MTD model for the non-Gaussian noise
assumption.

C. Voltage Balancing Status Analysis

The voltage balancing status information is critical to help
the distribution systems operate in a good condition. Fig. 7
illustrates the estimated VUF values at each system node using
AH-, SH1-, SH2-, and DH-MTD strategies. This figures shows
all of the MTD strategies can estimate VUF values within
the acceptable limit of 0∼3% as mentioned in [21]. However,
using AH-, SH1-, and SH2-MTD may cause some diffused
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Fig. 7. VUF estimated values at each system node using MTD strategies.

TABLE VII
COMPARISON OF VUFD METRICS FOR DIFFERENT MTD STRATEGIES AT

FIVE REPRESENTATIVE NODES [×10−4]

Metrics AH-MTD SH1-MTD SH2-MTD DH-MTD
V UFD9 5.72 5.18 2.34 1.96
V UFD31 12.00 19.58 9.39 2.65
V UFD56 12.80 10.29 7.83 4.37
V UFD86 30.37 3.35 11.64 1.93
V UFD117 13.41 20.21 9.05 3.69
V UFD 13.36 10.63 10.01 5.91

VUF values that are relatively far away from the corresponding
actual VUF values. The proposed DH-MTD can estimate the
most accurate values that are closest to the actual VUF.

Table VII compares the VUFD metrics for different MTD
strategies at five representative nodes (i.e., Nodes 9, 31, 56,
86, and 117). As can be seen, the proposed DH-MTD can
provide the smallest VUFD values compared with other MTD
strategies. For the V UFD metric, DH-MTD can reduce it by
126% [=(13.36-5.91)/5.91], 79.86% [=(10.63-5.91)/5.91], and
69.37% [=(10.01-5.91)/5.91], compared with AH-, SH1-, and
SH2-MTD. This is because the proposed DH-MTD strategy
can enhance the fitting accuracy of the voltage unbalance with
respect to the actual voltage unbalance. However, using AH-,
SH1-, and SH2-MTD cannot guarantee the system balancing
status as the actual one. This observation validates that the
actual balancing status of the unbalanced distribution systems
is not affected too much by the proposed DH-MTD strategy
in the cyberattack scenario.

D. Cyberattack Detection Analysis

Based on the estimated voltage phasor{U̇a, U̇ b, U̇ c} in the
cyberattack scenario, the normal measurements can be readily
estimated as fL(U̇a, U̇ b, U̇ c) using (5) by distribution system
operators3. This is because operators have the actual informa-
tion of both the reactance and RP matrices. However, attackers
know nothing about the RP matrix that has already been deeply
hidden by the proposed DH-MTD. By comparing the estimated
normal measurements with the power phasor measurements
{Ṡ′

L,a, Ṡ
′
L,b, Ṡ

′
L,c} in the cyberattack scenario, cyberattacks

can be readily detected based on the three-sigma rule (µ±3σ).
The branch cyberattack detection index (BCDI) is designed:

BCDI=
fL

(
U̇a, U̇ b, U̇ c

)
[
Ṡ′

L,a, Ṡ
′
L,b, Ṡ

′
L,c

]T /∈ [µL−3σL, µL+3σL] (34)

3Note that here we must use functions fL and fIN (instead of hL and hIN)
to estimate normal measurements that are not tampered with cyberattacks.
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Fig. 8. Examples of branch and node cyberattacks using BCDI and NCDI.

TABLE VIII
COMPARISON OF MTD STRATEGIES FOR CYBERATTACKS

Methods AH-MTD SH1-MTD SH2-MTD DH-MTD

TPR [%] 94.8 95.9 96.5 99.2

Likewise, the node cyberattack detection index (NCDI) is
designed as:

NCDI=
fIN

(
U̇a, U̇ b, U̇ c

)
[
Ṡ′

IN,a,Ṡ
′
IN,b,Ṡ

′
IN,c

]T /∈ [µIN−3σIN, µIN+3σIN]

(35)
Fig. 8 shows two examples of branch and node cy-

berattacks using BCDI and NCDI, where µL=0.9997;
σL=0.0207; µIN=0.999; and σIN=0.0149. The upper and lower
bounds are determined by the three-sigma rule, that is,
[µL−3σL, µL+3σL] and [µIN−3σIN, µIN+3σIN]. As can be
seen, cyberattacks can be accurately detected by using BCDI
and NCDI based on the proposed DH-MTD.

Table VIII compares different MTD strategies for detect-
ing cyberattacks under 1,000 scenarios in the IEEE 123-
node distribution system. As can be seen, the proposed DH-
MTD shows the largest TPR metric (∼99%) compared
with AH-MTD (∼94%), SH1-MTD (∼96%), and SH2-MTD
(∼97%) strategies. This is because the estimation results
fL(U̇a, U̇ b, U̇ c) and fIN(U̇a, U̇ b, U̇ c) using our proposed DH-
MTD are much closer to the actual measurement values
compared with AH-MTD, SH1-MTD, and SH2-MTD, which
has been demonstrated in Fig. 5. Thus, the difference between
estimates fL(U̇a, U̇ b, U̇ c) & fIN(U̇a, U̇ b, U̇ c) and attacked
measurements [Ṡ′

L,a, Ṡ
′
L,b, Ṡ

′
L,c] & [Ṡ′

IN,a, Ṡ
′
IN,b, Ṡ

′
IN,c]

can be identified more distinctly using the proposed DH-MTD.

E. Computational Efficiency Analysis

To demonstrate the computational efficiency of the proposed
method, we compare it with a two-stage benchmark model. In
the first stage, the benchmark model estimates the voltages V̇
for the previous normal operating condition. After obtaining
the estimated V̇ , the benchmark model estimates the voltages
U̇ in the cyberattack scenario in the second stage. The
comparison results of computational time for four cyberattacks
on branches are illustrated in Table IX. As can be seen, the
computational time using the proposed DH-MTD model is

TABLE IX
COMPUTATIONAL TIME OF TWO DH-MTD MODELS FOR FOUR

CYBERATTACKS ON BRANCHES [S]

Attacks two-stage model proposed model
Branch 9-10 2.6544 1.5364

Branch 26-29 3.0121 1.8352
Branch 58-59 2.8646 1.6645
Branch 99-100 3.0654 1.5323

TABLE X
PI INDEX COMPARISON FOR THE CONTINGENCY ANALYSIS OF MULTIPLE

MTD STRATEGIES

Methods AH-MTD SH1-MTD SH2-MTD DH-MTD

PI 4.6525 1.6411 1.6724 0.2457

approximately in the range of 1.5∼1.9 seconds, while the
computational time using the two-stage DH-MTD benchmark
model is approximately in the range of 2.6∼3.1 seconds. Thus,
the proposed model can significantly reduce the computational
time and enhance the computational efficiency.

To analyze the contingency of multiple MTD strategies,
Table X compares the PI index for the contingency analysis
of multiple MTD strategies. As can be seen in this table, the
proposed DH-MTD provides the smallest PI index (0.2457),
while AH-, SH1-, and SH2-MTD strategies obtain much larger
PI values. This observation is consistent with the findings in
Fig. 5, where more samples are under 0.95 p.u. using AH-,
SH1-, and SH2-MTD than using the proposed DH-MTD.

VI. DISCUSSION

To maintain the cybersecure and time-varying RP matrix, we
design an architecture of the secure communication between
the remote sensors (or telemetered devices) and DMS with
cyberattack detection, which is shown in Fig. 9. In this
architecture, the communication module is used to transmit
the reactance and RP matrix information Ż + ∆X that is
shared by the remote sensors (or telemetered devices). Due to
the intrusion of cyberattacks on the communication module,
the reactance and RP matrix information received by DMS
is changed to Ż ′ + ∆X′. We propose to design a cyberat-
tack detection module that can compare the communication
information sent by remote sensors Ż + ∆X and received by
DMS Ż ′ + ∆X′. A metric % can be used to judge whether it
exceeds the threshold ε. If % > ε, it means the communication
module has been manipulated and remedial actions have to be
developed by practitioners for remote sensor, communication
module, and DMS. Under this circumstance, the reactance and
RP matrix information Ż+ ∆X has to dynamically vary from
time to time. Besides, the reactance and RP matrix information
Ż ′+∆X′ received by DMS will not be included. Note that this
paper does not seek to solve the cyberattack detection problem
in the communication system, which has been widely studied
in the intrusion detection system (IDS) for decades.

As seen at the bottom of Fig. 9, if the communication
module is manipulated, the current reactance and RP ma-
trix information Żt + ∆Xt would dynamically change to
Żt+1+∆Xt+1 at the next time slot t+1. As cyberattacks have
been detected and remedial actions have been taken at time
slot t, the reactance and RP matrix Żt+1 + ∆Xt+1 at time
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Fig. 9. An architecture of the secure communication between the remote
sensors (or telemetered devices) and DMS with cyberattack detection.

slot t+1 can be securely transmitted from remote sensors (or
telemetered devices) to DMS.

Assume that an independent in-house testbed including net-
work architectures and protocols can be developed for the cy-
berattack detection module (CDM), such as the Internet-Scale
Event and Attack Generation Environment (ISEAGE) [28].
This in-house testbed has the highest security level, which
means that its information of CDM can only be shared with
distribution system operators who have the access authority.
Moreover, a scalable Internet environment is independently
provided to perform the detection and defense against cyber-
attacks that manipulate the sensor data packets of CDM.

VII. CONCLUSION

In this paper, we propose a novel moving-target-defense
(MTD) strategy that can elaborately and actively change the
self and mutual reactance of the transmission line in the
unbalanced AC distribution system. The proposed deeply-
hidden MTD (DH-MTD) model is constructed by the branch
and injection power phasor measurement functions considering
both the cyberattack scenario and normal operating condition.
Also, the voltage stability can be ensured by solving the non-
linear least square (NLS) based DH-MTD model. Compared
with conventional MTD methods, the proposed DH-MTD can
estimate more accurate state variables and voltage balancing
status. Also, it can be extended to the detection problem as
cyberattacks occur. In future work, the measurement redun-
dancy analysis will be performed based on the proposed MTD
strategy, which may identify critical measurements and thereby
benefit the MTD mechanism.
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